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Analysis Method for Generalized Suspended
Striplines

EIKICHI YAMASHITA, reLLOW, IEEE, MASAYUKI NAKAJIMA, AND KAZUHIKO ATSUKI

Abstract —This _paper describes an effective analysis method suited to .

generalized suspended striplines, that is, planar transmission lines having
multiple conductor sheets on multiple substrates, and multiple supporting
grooves or pedestals. Two example striplines structures are analyzed based
on this method. Some expenmental results are also shown.

1. INTRODUCTION

~{ USPENDED STRIPLINES (SSL’s) have recently been

Jused in many areas such as planar filter structures [1]
and millimeter-wave devices [2] by taking advantage of
their ease of fabrication and low lossness. SSL’s also have
a possibility to be used -to compose part of monolithic
microwave integrated circuits.

This paper first defines a class of striplines and an
original analysis method particularly suited to characterize
this class of striplines. Then, two example coupled stnphne
structures having a conductor aperture between two strips
are analyzed based on this method. The results of the
analysis are compared with experimental data in the form
of capacitance matrix elements.

- This semianalytic method has the merit of small matrix
dimensions compared with the finite-difference method,
the finite-element method, or the boundary-element
method.

II. GENERALIZED SUSPENDED STRIPLINES

Fig. 1(a) shows the cross-sectional view of a class of
striplines, that is, generalized suspended striplines
(GSSL’s). The cross section is composed of several homo-
geneous square regions with two opposed conductor walls;
the regions are located in parallel and are connected with
each other with common boundaries. Each of these regions
can befilled with either substrate material or air. The
boundary surface between two adjacent regions may be
covered partly with a strip conductor or an extended
ground conductor. The substrates of these structures can
be suspended by grooves or pedestals. A variety of new
stripline structures, as shown in Fig. 1(b), can be conceived
by applying GSSL’s.

III. ANALYSIS PROCEDURE

We seek the capacitance matrix as the basic parameters
of GSSL’s by assuming low loss and weak dispersion in
\ .
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Fig. 1.

the transmission of the fundamental mode and by extend-
ing the analysis method given in a previous paper [3].

Laplace’s equation is the basic equation to be solved in
the quasi-TEM wave analysis of GSSL’s. An outline of the
analysis steps follows. ‘

1) Specify the potential -at each conductor.

2) Expand the potential ¢,(x;, y;) defined i in the reglon
i in the Fourier series form as

bi(xp )= 3 |4 [ nh( )

n=1 i

‘nwy; nax;
+ Bm.cosh(——y )}sin( ) (1)
a;, | a;

where a; is the width of region i and the origin of the
x,-axis is taken at the left end of each region. This poten-
tial- form. satisfies Laplace’s equation within each region
and a boundary condition at two opposed conductor
surfaces. :
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3) Express the potential at each interface with the first-
order spline function. The shape of the spline function
" determines the coefficients of the above Fourier series.

4) Express the total static field energy of this system by

W= % ;’_% ffei[(%):(%)z} dx;dy,.  (2)

5) Minimize W by selecting the form of the spline
functions as trial functions. A set of linear simultaneous
equations is then obtained whose solutions determine
potential solutions and the minimum energy W,,.

6) The capacitance between the two conductors is then
related to the minimum energy W, . All element values of
the capacitance matrix can be obtained by the same proce-
dure.

The merits of this method are as follows.

1) The element values of the capacitance matrix can be
easily defined by initially specifying each conductor poten-
tial which ‘is also part of the trial functions. The initial
specification of conductor potentials is convenient in
analyzing multiconductor systems.

2) One of the two boundary conditions, the continuity
of potentials, is automatically satisfied since the surface
potentials are common to two adjacent regions.

3) The other boundary condition, the continuity of the
normal electric flux, is satisfied by taking the minimum of
the total energy. Avoiding the imposition of explicit
boundary conditions makes the present method easier than
the Green’s function method.

4) Since capacitance values are calculated based on the
minimum-energy principle or variational principle [4], the
trial functions can be expressed in a relatively simple form
to reach accurate capacitance values.

5) The spline function is more adaptable to various
types of surface potentials than linear combinations of
continuous functions. The procedure for minimizing the
energy by selecting a small number of spline knot poten-
tials is simpler than that of directly selecting a large
number of Fourier coefficients.

6) The method is simple for complicated structures. All
problems of GSSL’s are finally attributed to a set of linear
simultaneous equations.

7) The thickness of the conductor can easﬂy be taken
into account by adding just two new regions. ‘

8) GSSL’s as shown in Fig. 1 are difficult structures to
be analyzed with conformal mapping or the Green’s func-
tion method. Although they can be treated with a complete

numerical approach, such as the finite-difference method,

the finite-element method, or the boundary-element
method, the dimension of the matrices needed with these
‘methods will be larger than that with this semianalytical
method. The reason is that potential functions employed in
this method satisfy wave equations within each region and
boundary conditions at conductor surfaces before selecting
a small number of spline knots for numerical processing.
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Fig. 2. An aperture coupling structure of two striplines.

IV. APERTURE COUPLING OF TWO STRIPLINES

Fig. 2 shows an aperture coupling structure of two
striplines which belongs to the category of GSSL’s. The

“transmission characteristics of this structure are analyzed

by following the above steps. The capacitance matrix in
this case is defined by

FAR e ] G

where Q, and Q, are the electric charge on strip conduc-
tors 1 and 2 per unit length due to given potentials V; and
V, against the ground, respectively.

First, we specify V; # 0 and V, = 0. The potential func-
tions of the four regions as shown in Fig. 2 are expanded
as the Fourier series as

x nw nTx
¢1(X,y)= Z Ansinh(——y)cos(———),
n=1,3,5-- a, a

ronss
X< =,V y< a
(W< .0< ) (42)

2
o nwy
¢2(x’ y) - Z \iB,ﬁlIlh( )
n=1,3,5-- a;
nmT nmx
+cncosh(—)]cos(———),
a, a,

h
s £ [nm(22]

nwy nTX
+ E,cosh ( — |{cos| — |,
a3 as

a
(|x|<—23,h1+h2<y<hl+h2.+ h3) (4c)

d4(x,y) = i Fnsinh(m)m(m),

n=1,3,5--- ay

(|x|<

<y<h1+h2+h3+h4=b)

ay
—,h th,+h,
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Fig. 3. Spline functions to express the three interface potentials.

where cosine functions instead of sine functions have been
used because of the symmetry of this structure and the
origin of the x-axes specified at the center.

The potential functions at each interface are defined as

A =hx)=f(x)  (osx<Fy=h) ()
f(x)=0 (%<x<%,y=h1+0)
(sb)
A =f(x) =) (0<x<F,p=hith)] (50
A =fx=0  (Fex<FPoy=hh)
(59)
f(x)=0 F§<x<%ﬂy=hﬁw2—®
(50
) =f(x) =h(x)  (0<x<Sh vt by

(51)
fs(x) =0

a, a,
(7<x<7, y=h1+h2+h3—0). (5g)
When the specified values of conductor potentials are
considered, these interface functions are expressed with the
first-order spline functions as shown in Fig. 3, where p,,,
q,., and r,, are variables to give knot potentials. These are
also trial functions which are to be selected to minimize
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the total electric field energy. After the interface potentials

are known, the coefficients of the above Fourier series are
given by

(62)

4 a, /2 nnx
An——.——‘(m-)‘"/(; f(X)COS(‘Z) dx
a, sinh
a;
4 nwh,
B, = cosh
) nah, a,
azsmh( )
a,
5 nTX
f /2g(x)cos(——-)dx
o] a,
na(h+h " nax
—c:osh(———(l_Z) f2/2f(x)cos(—)dX]
2 0 a,
(6b)
) 4
Gi=- ) (n'n'h2
a, sinh
a;
na(h,+h a nwx
-lsinh(g)- fZ/zf(x)cos(——)dx
2 0 a,
na(h,+h,+h o nwx
—sinh( CRACRLD f/zg(x)cos(——)dx}
a, 0 a,
(6¢)
b 4
T (n'n'h3
a, sinh
a;
na(h,+h a nwx |
-[cosh(——(—li) /3/2h(X)COS(-—)dx
as 0 a3
hi+h,+h . nwx
_cosh(nw( 1+ ot hy) f/zg(x)cos(——)dx]
a3 0 03
(6d)
4
E,=~— ) nwh,
a,sinh
a;
nw(h,+h,+h 5 nwx
.[Sinh( (hy oyt hy) f/2g(x)cos(—)dx
a, 0 a,
hi+h a
—si]nh(ivlgl—Z) fa/zh(x)cos(nwx)dx] (6¢)
a3 0 a3
__ s nmx
F,= ' (nwh“)./(; h(x)cos( a )dx. (6f)
a,sinh
ay
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Now, the interface potentials can be conveniently ex-
pressed by spline functions, such as

m

Y F(x)

1=0

5(x) = ia(x)

f(x)= (7a)

(7b)

h(x) = l"jfoH,(x) (70

where
pl—pt 1
F(x) ;—:_b—t—(x—blﬂ)'*"pzﬂ (b,<x<b,,)
4 = I 1+1
0 (elsewhere)
(8a)
qz+1
G (X)”’ c,— ¢,y (x l+1)+qt+1 (Cz<x<Cz+1)
0 (elsewhere)
(8b)
rl z+1
H(x)= E—d"_(x dyi)tr (d<x<d)
0 (elsewhere)

(8¢)

and m,, m,, and m, are the numbers of knots at y =k,
y=nhy+h,, and y=h, + h,+ h,, respectively.

When (4a), (4b), (4¢c), and (4d) are substituted into (2),
the results of integration are expressed as

”12
W= Z Zf,kp,pﬁr > Zn,qu,qk+ Z Zé,kr,rk
j=0k=0 j=0k=0 J=0k=0
niy
+2Z Zu,kp,qk+22 X v (9)
J=0k=0 j=0k=0

where § ;. 1,4, €5 B and v, are given in Appendix L
The total energy W is minimized by a differentiation
procedure such as

oW

e (j=2,3,4,---,my) (10a)
P,

4

— = (j=0,1,2,-~-,m2) (10b)

dq,

oW

8—=0 (j=2,3,4,---,my). (10c)
7

The results of differentiation are given by a set of linear
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simultaneous equations as

i! my
Z §jkpk+ Z Aujquzo (j:;273547"'7m1) (113')
k=0 k=0

my ny ms
)3 By, Pt ) Nl + )y Vit =0
k=0 k=0 k=0

(j=0,1,2,---,m,) (11b)
my ms

Z Vgt Z g,k"k”—_o

k=0 k=0

(j=2,3,4,--+,m;). (11c)

Since the potentials of each conductor are known ( p, =

p1=V1, 1y =r, =V,), these equations are rewritten as a set
of inhomogeneous equations as
m my 1
b §,kpk+ )y Mo = — Z fjle
k=2 k=0 k=0
(j=2,3,4,---.m;) (12a)
g
Z lu‘kjpk+ Z n,qu+ Z ijrk
1
- Z (”ijl+yij2)
k=0
(j=0,1,2,---,m,) (12b)
ny my 1
> Yl T )y g_]krk:_ Z ‘f,sz
k=0 k=2 k=0
(j=2,3,4,---,m3). (12¢)

These linear equations can be easily solved on a com-
puter. When the solutions of p,, g,, and r, are substituted
again into the energy expression (2), the value of W
corresponds to W,

min*

Since the stored energy in this capacitor is C,,V;2/2,
which should be equal to W, Cy; is given by

2Wmm
. (13)

C,, =
i1 Vlz

When the conductor potentials are specified as V; =0 and
V,# 0, C,, can be calculated in a similar fashion. When
the conductor potentials are specified as V, =V, =7V, the
capacitance C = Cj; + C,, +2(;, can be calculated; C,; is
then given by (C — Cy; — C5,) /2.

V. NUMERICAL PROCESSING AND ACCURACY

When the linear simultaneous equations (12a), (12b),
and (12c) are solved as a matrix equation on a computer, it
is important to reduce the size of the matrix and simplify
the analytical expression of each element in order to
reduce the computation time.

The size of the matrix is increased with the number of
interface boundaries. When some geometrical symmetries
exist in the structure, the size of the matrix can be effec-
tively decreased. Since the structure in Fig. 2 is symmetri-
cal, only half of the interface boundaries have to be
considered. A typical number of spline knots was 16 for
each interface in this case.
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Secondly, the convergence of series appearing in matrix
elements is considered. The series of u,, and v, involving
v,(a,, h,)=1/sinh(nmh,/a,) converge fast because they
behave as exponential functions. On the contrary, the
series of §,, m,, and {,, involving B,(a,, h)=
1/tanh(nwh,/a,) converge slowly and will always appear
in the analyses of GSSL’s. The convergence of such series
can be improved by applying the summation formula
discussed in Appendix II. As a result, the computation
time for one value of capacitance was reduced to one-sixth
the original time. A typical number of Fourier series terms
in the present case was 160.

Since this method is based on the minimum-energy
principle, the capacitance thus obtained is always larger
than the true value. The accuracy of the calculated wave-
length reduction factor and calculated characteristic im-
pedance in a previous paper [3] were approximately 1
percent and 0.1 percent, respectively.

VI. NUMERICAL AND EXPERIMENTAL RESULTS

The following parameters are taken for the purpose of
comparison between theory and experiment:

a,;=10 a,=18 a;=14 a,=10

h;=0335 h,=0.140 hy=10.130 h,=0.355
w,=w,=5 §=2~14 (unit : mm)
6=€,=€, €,=¢;=222¢, (RT Duroid 5880).

Satisfactory convergence on capacitance values has been
observed for the Fourier terms of 160 to 180 and for spline
knot numbers greater than 16 for each boundary surface.
The computation time for C;; was about 10 s on a HITAC
M-260D computer and 1.5 min on a VAX 11 /750 com-
puter.

The line capacitance values were measured with a HP
LCR meter by changing the length of the coupled lines.
Fig. 4 shows reasonable agreement between calculated and
measured capacitance values against the dimension of the
aperture S. Since this structure is almost symmetrical, the
coupling coefficient k is approximately defined by

V4

even

— Zodd
Zent Zoga

even

(14)

where Z,,., and Z_44 are the even-mode and the odd-mode
impedance, respectively. Fig. 5 shows how the coupling
coefficient k is controlled by the aperture dimension S.

VII. ANOTHER EXAMPLE STRUCTURE

Fig. 6 shows another example of broadside coupled
striplines. The thickness of strip and aperture conductors
t;, t,, and ¢, are taken into account in this case. The
analysis of capacitance matrix elements is carried out in a
similar fashion to the preceding case except for the ad-
ditional regions 1/, 3, and 5’. The derivation of analytical
expressions is not included in this paper, however, since
they can be straightforwardly processed.
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The parameters of this example are as follows: ”Jk_n=1§5m (n7)’ 7€2037, (42, hy)a, (a, b) e, (s, ;)
hy=hy=05 hy=h;=20 (A4)
a,=a;=250 a,=a;=300
W,=W,=160 §=10.0,25.0 a (=)
ty=1,=0035 1,=01~07 (unit:mm) ”fk_n=1§5_” (m,)3‘3"37n(”3’h3)
€ =€/ =€ =€5= €5 =€, ”
€, =¢€,=2.0¢, (Teflon composite material). a,(as, J) n(as,c) (AS)

(nﬂxj) (nvrle) (nvrxjH) (nwxj)
cos —COS cos —cos
al al al al . 1
_ N
X, —X,_ X1~ X
a,(a,x,) = o S (i=1.2.3,4)  (a6)
1-cos ( - )
1 , j — 0
X1
Theoretically calculated values of C;; are compared with B,(a,h,)= (i=1,2,3,4) (A7)
N N nah
measured ones in Fig. 7, which indicates good agreement. tanh :
The computation time C;; in this case was about 4 min on a,
a VAX 11 /750 computer.
1
Yn(al,hl)=-——7hl—- (l=1,2,3,4). (AS)
sinh
APPENDIX 1 !
The parameters appearing in (12a), (12b), and (12c) are
as follows: APPENDIX 11
- ) The essential part of £, n,, and {, in (9) is a series
£, = Y - given by
T asinse (nm) il 1 1
Saph, X x¢) = 1%"5 n? nwh
n=1,3,5--- 1
[5303:8 (a3, h5)a, (a3, j) (a3, d,) tanh( a, )

‘a,(a,x)e,(a,x,)  (i=1,2,3,4).
+eqaiB,(aghy)a,(a,, j) (a4’dk)] (A1) (A9)
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Because « (a,, x;)e, (a,, x;) is a product of cosine func-
tions, the series (A9) is eventually reduced to a linear
combination of terms as

™3

8.(a; hyyx;) =
n=1,35,-

which are rewritten as

i 1
81(ai7hi’xj)= > 2\ [nwh
- n=1,3,5-: tanh( t)
a;
cos( )+8 (a;.x;) (A12)
a;
where
nwx,
, © cos( a-j)
d(a;, xj) = by — —. (A13)
. n=1,3,5,--- n

It is possible to sum §y(a,, x;) as

™)
1 a; |
—3 —11'1—

7 0
3(0,,x)=§2 1

3422 1 'wxj 4
8 " 288

+ 7 ij 6+ Xj .
—_— ——— e e —_— < — <
86400 | a, KIS
(Al4)
where '
e . 1 »
Z 5 =1.2020569032 - - (A15)

Since the first term on the right-hand side of (All) is a
rapidly converging series of exponential functions, the
original series (A9) can also be changed to converge faster.
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