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Analysis Method for Generalized Suspended-.\
Striplines

EIKICHI YAMASHITA, FELLOW, IEEE, MASAYUKI NAKAJIMA, AND KAZUHIKO ATSUKI

Abstract —This, paper describes an effeetive anafysis method suited to

generalized suspended striplines, that is, planar transmission lines having

multiple conductor sheets on multiple substrates, and multiple supporting

grooves or pedestafs. Two example striplines structures are analyzed based

on this method. Some experimental results are also shoym.

I. INTRODUCTION

sUSPENDED STRIPLINES (SSL’S) have recently been

used in many areas such as planar filter structures [1]

and n@limeter-wave devices [2] by taking advantage of

their ease of fabrication and low lossness. SSL’S also have

a possibility to be used to compose part of monolithic

microwave integrated circuits.

This paper first defines a class of striplines and an

ori&inal analysis method particularly suited to characterize

this class of striplines. Then, two example coupled stripline

structures having a conductor aperture between two strips

are analyzed based on this method. The results of the

analysis are compared with experimental data in the form

of capacitance matrix elenients.

This ser@analytic method has the merit of small matrix

dimensions compared with the finite-difference method,

the finite-element method, or the boundary-element

method.
Fig.

II. GENERALIZED SUSPENDED STRIPLINES

Fig. l(a) shows the cross-sectional view of a class of

(b)

1. (a) Cross-sectional view of generalized suspended striplines. (b)
Other examples of GSSL’S.

. .
striplines, that is, generalized suspended striplines

(GSSL’S). The cross section is composed of several homo-

geneous square regions with two opposed conductor walls;

the regions are located in parallel and are connected with

each other with common boundaries. Each of these regions

can be filled with either substrate material or air. The

boundary surface between two adjacent regions may be

covered partly with a strip conductor or an extended

the transmission of the fundamental mode and by extend-

ing the analysis method given in a previous paper [3].

Lapla.ce’s equation is the basic equation to be solved in

the quasi-TEM wave analysis of GSSL’S. An outline of the

analysis steps follows.

1) Specify the potential at each conductor.

2) Expand the potential @i(xi, yi) defined in the region

i in the Fourier series form as

ground conductor. The substrates of these structures can

be suspended by grooves or pedestals. A variety of new

stripline structures, as shown in Fig. l(b), can be conceived
4(xiYi)=~1[Anisi~(~)

by applying GSSL’S.

III. ANALYSIS PROCEDURE

We seek the capacitance matrix as the basic parameters
‘Bc0sh(7-)lsin‘1)

of GSSL’S by assuming low loss and weak dispersion in
\ where a i is the width of region i and the origin of the

x-axis is taken at the left end of each region. This poten-
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3) Express the potential at each interface with the first-,.
order spline function. The shape of the spline function

determines the coefficients of the above Fourier series.

4) Express the total static field energy of this system by

5) Minimize W by selecting the form of the spline

functions as trial functions. A set of linear simultaneous

equations is then obtained whose solutions determine

potential solutions and the minimum energy W~ti.

6) The capacitance between the two conductors is then

related to the minimum energy W~i.. All element values of

the capacitance matrix can be obtained by the same proce-

dure.

The merits of this method are as follows.

1) The element values of the capacitance matrix can be

easily defined by initially specifying each conductor poten-

tial which ‘is also part of the trial functions. The initial

specification of conductor potentials is convenient in

analyzing multiconductor systems.
2) One of the two boundary conditions, the continuity

of potentials, is automatically satisfied since the surface

potentials are common to two adjacent regions.

3) The other boundary condition, the continuity of the

normal electric flux, is satisfied by taking the minimum of

the total energy. Avoiding the imposition of explicit

boundary conditions makes the present method easier than

the Green’s function method.

4) Since capacitance values are calculated based on the

minimum-energy principle or variational principle [4], the

trial functions can be expressed in a relatively simple form

to reach accurate capacitance values.

5) The spline function is more adaptable to various

types of surface potentials than linear combinations of

continuous functions. The procedure for minimizing the

energy by selecting a small number of spline knot poten-

tials is simpler than that of directly selecting a large

number c~f Fourier coefficients.

6) The method is simple for complicated structures. All

problems of GSSL’S are finally attributed to a set of linear

simultaneous equations.
7) The thickness of the conductor can easily be taken

into account by adding just two new regions.

8) GSSL’S as shown in Fig. 1 are difficult structures to

be analyzed with conformal mapping or the Green’s func-

tion meth~od. Although they can be treated with a complete

numerical approach, such as the finite-difference method,

the finite-element method, or the boundary-element

method, the dimension of the matrices needed with these

methods will be larger than that with this sernianalytical

method. The reason is that potential functions employed in

this method satisfy wave equations within each region and

boundary conditions at conductor surfaces before selecting

a small number of spline knots for numerical processing.

Fig. 2. An aperture coupling structure of two striplines.

IV. APERTU~ COUPLING OF Two STRIPLINES

Fig. 2 shows an aperture coupling structure of

stritiines which belongs to the category of GSSL’S.

1986

two

The.
transmission characteristics of this structure are analyzed

by following the above steps. The capacitance matrix in

this case is defined by

(3)

where Ql and Q2 are the electric charge on striP conduc-

tors 1 and 2 per unit length due to given potentials VI and

V2 against the ground, respectively.

First, we specify VI # O and V2 = O. The potential func-

tions of the four regions as shown in Fig. 2 are expanded

as the Fourier series as

(4a)

(4b)

=[
+,(X>Y) = m ()n 7ry

D. sinh —
n=l,3,5 . . . a~

‘E.cosh(%)lc
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PO
1.0 h the total electric field energy. After the interface potentials

are known, the coefficients of the above Fourier series are

given by

0., ‘0
0.4

-h

c1
Q 0.3 m-l

m 0.2 ‘qm

0.1 -
q

o -’
rn2 ‘m2+l

co % %2 %2+1

-c
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r
0.

‘o m3 ‘m3+l

do dm +3 %3+1

Fig. 3. Spline functions to express the three interface potentials.

where cosine functions instead of sine functions have been

used because of the symmetry of this structure and the

origin of the x,-axes specified at the center.

The potential functions at each interface are defined as

f,(x) =.f,(x) =f(~)

f,(x)=o

f3(x) =f4(x) =dx)

f3(x) =f,(~) ‘o

f,(x)=o

f,(x) =f,(x) =~(x)

f,(x)=o

[ a4

(O<x<$, y=hl
)

(5a)

(
&x<; ,y=hl+O

)
(5b)

(
O<x<:, y=hl+hl

)
(5C)

(

s aj
—<x<—, y=hl+h,
2 2 1

(5d)

(

as ab
—<x<T, y=hl+hz —O
2 )

(5e)

(
O<x<; ,y=hl+hz+hq

)
(5f)

(L L J

When the specified values of conductor potentials are

considered, these interface functions are expressed with the

first-order spline functions’ as shown in Fig. 3, where pm,

q~> and ~tti are Vafiables to give knot potentials. These are
also trial functions which are to be selected to minimize

4

[(1

nrhz
B~=—

()

cosh —
n~hz az

a, sinh —
az

f%(+os(:)dx

-.osfn(h::h2))(22j_(x,cos(:)dx]

(,b)

4
cn=–

()

nrh,
al sinh —

a,

(nm(hl+h, +hq)
– sinh

a,
)[2g,x,cos(;)dx]

(6c)

4
D~=–

()

nrh~
a:] sinh —

aj

[cosh(nT(h;:h2))~ 3/2h,x,cos(:)dx

id)

4
E~=–

()

nrh~
a ~sinh —

aj

“[(nn(hl+h, +h~)
sinh

aj
)~/2g,x,cos(;]dx

-si~~(nm(h~~h2))(3/2h(X).0S(~)dX](6.)

FH=– 4nmh, ~4’2h(x)cos(;)dx (6f)

()
a,$sinh —

ab
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Now, the

pressed by

where
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interface potentials can be conveniently ex-

spline functions, such as

(7a)

g(x) = ~ G,(x) (7b)

h(x) = ~ H,(x) (7C)
,=0

(o (elsewhere)

(8a)

(elsewhere)

(8b)

{

‘l–r’+l(X–d,+l)+rz+l (dz<.x<dz+J
H,(x) = ~,–~,+1

o (elsewhere)

(8c)

and ml, mz, and m3 are the numbers of knots at Y = Al,

Y = Al+ AZ, and Y = Al+ h2 + hq, respectively.
When (4a), (4b), (4c), and (4d) are substituted into (2),

the results of integration are expressed as

‘$where ilk, qlk? ,k~ ~Jk? and vl~ are given in Appendix L

The total energy W is minimized by a differentiation

procedure such as

C?w
—=0 (j=2,3,4,.., m1)
13pJ

(lOa)

aw
—=0 (j=0,1,2,.., m2)
dqj

(lOb)

aw
—=0 (j=2,3,4,..., m3)-
dr,

(1OC)

The results of differentiation are given by a set of linear

simultaneous equations as

? {Jkpk + : ~,kqk = o (j=2,3,4,, m1) (ha)
k=O k=O

? @k,pk + $oqlkqk + k~ovklrk = 0
k=O

(j=o,l,2,.. .,m2) (llb)

? ‘jkqk + ? t,krk = o (j=2,3,4,.. .,mJ). (Ilc)
k=O k=O

Since the potentials of each conductor are known (p. =

P 1 = ~1, ro = rl = V2), these equations are rewritten as a set
of inhomogeneous equations as

m, m, 1

k=2- k=O “ k=O “

(j= Z3,4,”, m1) (12a)

k=2 “ k=O ‘ k=2 “

= - k$o(~kJvl + ‘k,v2)

(j=0,1,2,.. .,mz) (12b)

$ov,kqk + ? ~,krk = - i tJkv2
k=2 k=O

(j=2,3,4,..., m3). (12c)

These linear equations can be easily solved on a com-

puter. When the solutions of p,, q,, and r, are substituted

again into the energy expression (2), the value of W

corresponds to W~,n.

Since the stored energy in this capacitor is CllV~/2,

which should be equal to W~,D, Cll is given by
m.. ,
2 Wmln

C1l = —
v: “

(13)

When the conductor potentials are specified as VI= O and

V2 + O, C22 can be calculated in a similar fashion. When

the conductor potentials are specified as VI= V2 = V, the

capacitance C = Cll + C22 + 2C12 can be calculated; C12 is

then given by (C – Cll – C22)/2.

V. NUMERICAL PROCESSING AND ACCURACY

When the linear simultaneous equations (12a), (12b),

and (12c) are solved as a matrix equation on a computer, it

is important to reduce the size of the matrix and simplify

the analytical expression of each element in order to

reduce the computation time.

The size of the matrix is increased with the number of

interface boundaries. When some geometrical symmetries

exist in the structure, the size of the matrix can be effec-

tively decreased. Since the structure in Fig. 2 is symmetri-

cal, only half of the interface boundaries have to be

considered. A typical number of spline knots was 16 for

each interface in this case.
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Secondly, the convergence of series appearing in matrix

elements is considered. The series of p~, and v~l involving

Y.( a,, h,)= l/sinh(~~~ ,/a,) converge fast because they
behave as exponential functions. On the contrary, the

series of (k,, qk,, and {k, involving p~(a,, h,) =

l/tanh ( n Th, /a, ) converge slowly and will always appear

in the analyses of GSSL’S. The convergence of such series

can be improved by applying the summation formula

discussed in Appendix II. As a result, the computation

time for one value of capacitance was reduced to one-sixth

the original time. A typical number of Fourier series terms

in the present case was 160.

Since this method is based on the minimum-energy

principle, the capacitance thus obtained is always larger

than the true value. The accuracy of the calculated wave-

length reduction factor and calculated characteristic im-

pedance in a previous paper [3] were approximately 1

percent and 0.1 percent, respectively.

VI. NUMERICAL AND EXPERIMENTAL RESULTS

The following parameters are taken for the purpose of

comparison between theory and experiment:

al=10 a2=18 a3=14 a4 =10

hl= 0.335 hz= 0.140 hq= 0.130 hg = 0.355

W1=W2=5 S=2-14 (unit: mm)

c1=c4=c~ 62=63 = 2.22C0 (RT Duroid 5880).

Satisfactory convergence on capacitance values has been

observed for the Fourier terms of 160 to 180 and for spline

knot numbers greater than 16 for each boundary surface.

The computation time for Cll was about 10 son a HITAC

M-260D computer and 1.5 min on a VAX 11/750 com-

puter.

The line capacitance values were measured with a HP

LCR meter by changing the length of the coupled lines.

Fig. 4 shows reasonable agreement between calculated and

measured capacitance values against the dimension of the

aperture S. Since this structure is almost symmetrical, the

coupling coefficient k is approximately defined by

z – Zodd
k = “en

Zeven+ Zodd
(14)

where Z.v.. and ZO~~ are the even-mode and the odd-mode

impedance, respectively. Fig. 5 shows how the coupling

coefficient k is controlled by the aperture dimension S.

VII. ANOTHER EXAMPLE STRUCTURE

Fig. 6 shows another example of broadside coupled

striplines. The thickness of strip and aperture conductors

t1> t~, and t~ are taken into account in this case. The

analysis of capacitance matrix elements is carried out in a

similar fashion to the preceding case except for the ad-

ditional regions 1’, 3, and 5’. The derivation of analytical

expressions is not included in this paper, however, since

thev can be strai~htforwardlv Processed.

1.0
Cll C22 -C12

calculated — ---- —-—
measured 000 ● 00 xxx

8
....

\

..
..

H

1
,.~.x.-.- .-. -. —-- . . . . . . . ..- ._. _._ .-x

~ ,/ x
$

/-f””*~.
t

o~

o 2.o 4.0 6.0 8.0 . . 14.0

S(nml)

Fig. 4. Calculated and measured values of capacitance matrix elements.
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Fig. 7. Comparison of calculated and measured values of Cll for the

structure of Fiz 6.

The parameters of this example are as follows:

hl=hd=0.5 h2=h3=2.0 (A4)

al = ae = 25.0 a2 = a3 = 30.0

WI= W2 =16.0 S =10.0,25.0 (-2~,3aiyn(a3, h3)

tl= t3= 0.035 12= 0.1- 0.7 (unit: mm)
V,k = E—

fL=E1, =f3=f5=65/=t~
?I=1,3,5 . . (rim)

E2 = t4 = 2.6c0 (Teflon composite material). “an(a~,d,)an(as,ck) (A5)

Theoretically calculated values of Cll are compared with

measured ones in Fig. 7, which indicates good agreement.

The computation time Cll in this case was about 4 tin on

a VAX 11/750 computer.

APPENDIX I

The parameters appearing in (12a), (12b), and (12c) are

as follows:

2
~,k= ~ —

n=l,3,5. . (n77)3

[~3aiBn(a3jh3)~ n(a3j~,)~n(a3,~k)

( d )a.(a,,d,)]+cda@.(a4,hd)an ’42 J (Al)

(i=l,2,3,4) (A6)

1
R(a,, h,)=

N
(i=l,2,3,4) (A7)

nwh,
tanh —

a,

yn(a,,h,)= ~mh
()

(i=l,2,3,4). (AS)

sinh 2
at

APPENDIX II

The essential part of $,k, q,k, and {,k in (9) is a series

given by

“an(al,x,)an(a[,xk) (z=1,2,3,4).

(A9)
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Because an(ai, x~)afl(ai, x~) is a product of cosine func-

tions, the series (A9) is eventually reduced to a linear

combination of terms as

/nvx, \

H
.

~l(ui,hi,xk)~ ~ $Cosn~h,

( )’
(All)

n=l,3,5, . . .
tanh 4

ai

which are rewritten as

()n 7rxj
.Cos — +80(ai, xj ) (A12)

ai

where

(1

n nxj
Cos —

h(ai, ‘j) ~ ~ n3ai . (A13)

n=l,3,5, . . .

It is possible t.o sum 8.( ai, Xj) as

(-)
rxj 2

77xj

80(ai~xj) ‘ ~n~l$++ a,in —
1

-3+:2(%)2+:E3’
‘=X3’+”””(-”<3<”)

(A14)

where

f : =1.20205690’2 . . . .
~=ln

(A15)

Since the first term on the right-hand side of (All) is a

rapidly converging series of exponential functions, the

original series (A9) can also be changed to converge faster.
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